add documentation for new math functions
This commit is contained in:
parent
4bf3d685b8
commit
4430d6d125
2 changed files with 212 additions and 2 deletions
|
@ -272,8 +272,10 @@ pub mod fns {
|
|||
math1 "sqrt" sqrtf,
|
||||
math1 "cbrt" cbrtf,
|
||||
math1 "exp" expf,
|
||||
math1 "expMinus1" expm1f,
|
||||
math1 "exp2" exp2f,
|
||||
math1 "ln" logf,
|
||||
math1 "ln1Plus" log1pf,
|
||||
math1 "log2" log2f,
|
||||
math1 "log10" log10f,
|
||||
math2 "hypot" hypotf,
|
||||
|
@ -284,8 +286,6 @@ pub mod fns {
|
|||
math1 "acos" acosf,
|
||||
math1 "atan" atanf,
|
||||
math2 "atan2" atan2f,
|
||||
math1 "expMinus1" expm1f,
|
||||
math1 "ln1Plus" log1pf,
|
||||
math1 "sinh" sinhf,
|
||||
math1 "cosh" coshf,
|
||||
math1 "tanh" tanhf,
|
||||
|
|
210
docs/system.dj
210
docs/system.dj
|
@ -103,6 +103,216 @@ Additionally, the syntax `a | b` may be used to signify that one of the listed t
|
|||
|
||||
`/` divides a number by another number.
|
||||
|
||||
```haku
|
||||
floor
|
||||
x : number
|
||||
-> number
|
||||
|
||||
ceil
|
||||
x : number
|
||||
-> number
|
||||
|
||||
round
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`floor`, `ceil`, and `round` are rounding functions.
|
||||
Each of them rounds a little differently:
|
||||
|
||||
- `floor` rounds towards -∞.
|
||||
- `ceil` rounds towards +∞.
|
||||
- `round` rounds half towards +∞.
|
||||
|
||||
```haku
|
||||
abs
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`abs` returns the absolute value of the given number.
|
||||
|
||||
If `x` is less than zero, returns `-x`.
|
||||
Otherwise returns `x`.
|
||||
|
||||
```haku
|
||||
mod
|
||||
x : number
|
||||
y : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`mod` is the modulo operation.
|
||||
|
||||
It returns the remainder of dividing `x` by `y`.
|
||||
haku uses the Euclidean definition, which means the remainder returned by `mod` is _always non-negative_.
|
||||
|
||||
```haku
|
||||
pow
|
||||
base : number
|
||||
exponent : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`pow` raises `base` to the given `exponent`.
|
||||
|
||||
```haku
|
||||
sqrt
|
||||
x : number
|
||||
-> number
|
||||
|
||||
cbrt
|
||||
x : nunber
|
||||
-> number
|
||||
```
|
||||
|
||||
`sqrt` returns the square root of the given number.
|
||||
|
||||
`cbrt` returns the cubic root of the given number.
|
||||
|
||||
Other roots may be obtained using `pow x (1 / base)`.
|
||||
|
||||
```haku
|
||||
exp
|
||||
x : number
|
||||
-> number
|
||||
|
||||
ln
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
In the following functions, `e` is the base of the natural logarithm (approximately `2.7128`.)
|
||||
The `e` constant (Euler's number) is currently not exposed to haku source code; you have to define it yourself.
|
||||
|
||||
`exp` is the exponential function `pow e x`.
|
||||
|
||||
`ln` is the natural logarithm (logarithm base `e` of `x`.)
|
||||
|
||||
```haku
|
||||
expMinus1
|
||||
x : number
|
||||
-> number
|
||||
|
||||
ln1Plus
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`expMinus1` is `pow e x - 1`, but accurate even when `x` is close to zero.
|
||||
|
||||
`ln1Plus` is `ln (1 + x)`, but more accurate than if the operations are performed separately.
|
||||
|
||||
```haku
|
||||
exp2
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`exp2` is the exponential function `pow 2 x`.
|
||||
|
||||
```haku
|
||||
log2
|
||||
x : number
|
||||
-> number
|
||||
|
||||
log10
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`log2` is the logarithm base `2` of `x`.
|
||||
|
||||
`log10` is the logarithm base `10` of `x`.
|
||||
|
||||
```haku
|
||||
hypot
|
||||
x : number
|
||||
y : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`hypot` is the hypotenuse of the Pythagorean triangle with right angle-adjacent sides `x` and `y`.
|
||||
|
||||
```haku
|
||||
sin
|
||||
x : number
|
||||
-> number
|
||||
|
||||
cos
|
||||
x : number
|
||||
-> number
|
||||
|
||||
tan
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`sin`, `cos`, and `tan` are the [trigonometric functions][] sine, cosine, and tangent.
|
||||
Their argument `x` is counted in radians.
|
||||
|
||||
[trigonometric functions]: https://wikipedia.org/Trigonometric_functions
|
||||
|
||||
```haku
|
||||
asin
|
||||
x : number
|
||||
-> number
|
||||
|
||||
acos
|
||||
x : number
|
||||
-> number
|
||||
|
||||
atan
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`asin`, `acos`, and `atan` are the [inverse trigonometric functions][] arc sine, arc cosine, and arc tangent.
|
||||
Their argument `x` is counted in radians.
|
||||
|
||||
[inverse trigonometric functions]: https://wikipedia.org/Inverse_trigonometric_functions
|
||||
|
||||
```haku
|
||||
atan2
|
||||
y : number
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`atan2` is the angle between the positive X axis and a line that passes through `(0, 0)` and `(x, y)`.
|
||||
|
||||
Note the reverse argument order---`y` comes first, due to `atan2` being a convenience function over `atan (y / x)` that is defined for all arguments.
|
||||
|
||||
```haku
|
||||
sinh
|
||||
x : number
|
||||
-> number
|
||||
|
||||
cosh
|
||||
x : number
|
||||
-> number
|
||||
|
||||
tanh
|
||||
x : number
|
||||
-> number
|
||||
|
||||
asinh
|
||||
x : number
|
||||
-> number
|
||||
|
||||
acosh
|
||||
x : number
|
||||
-> number
|
||||
|
||||
atanh
|
||||
x : number
|
||||
-> number
|
||||
```
|
||||
|
||||
`sinh`, `cosh`, `tanh`, `asinh`, `acosh`, and `atanh`, are the six [hyperbolic functions][].
|
||||
|
||||
[hyperbolic functions]: https://en.wikipedia.org/wiki/Hyperbolic_functions
|
||||
|
||||
|
||||
## Logic
|
||||
|
||||
|
|
Loading…
Reference in a new issue