haku - first draft
This commit is contained in:
parent
2a68cfbf63
commit
d813675d47
5 changed files with 1205 additions and 0 deletions
982
content/programming/blog/haku.tree
Normal file
982
content/programming/blog/haku.tree
Normal file
|
@ -0,0 +1,982 @@
|
|||
%% title = "haku - writing a little programming language for fun"
|
||||
scripts = ["treehouse/vendor/codejar.js", "treehouse/components/literate-programming.js"]
|
||||
|
||||
% id = "01J3K8A0D1774SFDPKDK5G9GPV"
|
||||
- I've had this idea on my mind as of late, of a little lazily-evaluated pure functional programming language that would run in your browser.
|
||||
|
||||
% id = "01J3K8A0D1WTM2KHERFZG2FWBJ"
|
||||
+ the primary use case would be writing fun audiovisual sketches you can inspect and edit live, because after all everything is declarative.
|
||||
this was motivated by my discovery of [glisp][], which was recently on the front page of [Lobsters][glisp lobsters].
|
||||
|
||||
[glisp]: https://glisp.app
|
||||
[glisp lobsters]: https://lobste.rs/s/amanh7/glisp_graphical_lisp
|
||||
|
||||
% id = "01J3K8A0D16PAM5AV11E8JF3AF"
|
||||
- [I even commented about it!](https://lobste.rs/s/amanh7/glisp_graphical_lisp#c_oqa6ap)
|
||||
|
||||
% id = "01J3K8A0D1N4EGRKPFTP0FNZSW"
|
||||
- so let's get going!
|
||||
|
||||
% id = "01J3K8A0D1ZXQ9NJ8CVGBQ7FZB"
|
||||
- ### parsing
|
||||
|
||||
% id = "01J3K8A0D11KMK6MWCRT5KQV09"
|
||||
- I don't know about you, but I like writing parsers.
|
||||
however, since I'm trying to keep this language absolutely _tiny_, I think S-expressions might be the best fit for this purpose.
|
||||
|
||||
% id = "01J3K8A0D1PT058QRSXS142Y5T"
|
||||
- honestly I don't even like S-expressions that much.
|
||||
I find them extremely hard to read, but I dunno - maybe my mind will change after having written a language using them.
|
||||
we can always swap the syntax out for something else later.
|
||||
|
||||
% id = "01J3K8A0D1198QXV2GFWF7JCV0"
|
||||
- let me show you an example of how I'd like haku to look.
|
||||
I find that is the best way of breaking down syntax into smaller parts.
|
||||
|
||||
```haku
|
||||
; Recursive fibonacci
|
||||
(def fib
|
||||
(fn (n)
|
||||
(if (< n 2)
|
||||
n
|
||||
(+ (fib (- n 1)) (fib (- n 2))))))
|
||||
|
||||
(print (fib 10))
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1KNHJ10WCVX8C88WP"
|
||||
- we have a handful of lexical elements: parentheses, identifiers, and numbers.
|
||||
|
||||
there are also comments and whitespace, of course.
|
||||
those will get skipped over by the lexer, because we're not really building a production-grade language to need them.
|
||||
|
||||
% id = "01J3K8A0D14Z8W5K6KDEJQ6DZJ"
|
||||
- syntactically, we only really have two types of productions.
|
||||
there are literals, and there are lists.
|
||||
|
||||
% id = "01J3K8A0D1N8SP9J8EMBNEVG9C"
|
||||
- when I say _literals_, I'm referring to both identifiers and integers.
|
||||
we will of course differentiate between them in the syntax, because they mean different things.
|
||||
|
||||
% id = "01J3K8A0D14A94S2RNFV97DX18"
|
||||
- we will start by writing the lexical analysis part of our parser, to join single characters up to slightly more managable pieces.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export const lexer = {};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1YZMHNSRZMSBNQVD4"
|
||||
- the entire idea of a lexer is that you read the input string left to right, top to bottom, and piece together larger _tokens_ out of that.
|
||||
|
||||
% id = "01J3K8A0D1C9YBXWK257GFMR68"
|
||||
- for instance, for the input string
|
||||
|
||||
```haku
|
||||
(example s-expression)
|
||||
```
|
||||
|
||||
we will produce the tokens
|
||||
|
||||
| type | start | end | text |
|
||||
| --- | --: | --: | --- |
|
||||
| ( | 0 | 1 | `(` |
|
||||
| identifier | 1 | 8 | `example` |
|
||||
| identifier | 9 | 21 | `s-expression` |
|
||||
| ) | 21 | 22 | `)` |
|
||||
| end of file | 22 | 22 | |
|
||||
|
||||
% id = "01J3K8A0D1GGQ292D4MQBCGHWC"
|
||||
- to lex the input into tokens, we'll need to know the input string (of course), and where we currently are in the string.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
lexer.init = (input) => {
|
||||
return {
|
||||
input,
|
||||
position: 0,
|
||||
};
|
||||
};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D139JN9J5TTA2WAP4R"
|
||||
- we'll also define a few helper functions to make reading text a little easier, without having to perform any bounds checks whenever we read tokens.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export const eof = "end of file";
|
||||
|
||||
lexer.current = (state) => {
|
||||
return state.position < state.input.length
|
||||
? state.input.charAt(state.position)
|
||||
: eof;
|
||||
};
|
||||
|
||||
lexer.advance = (state) => ++state.position;
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1GPMDD8S063K6ETM3"
|
||||
- our lexer will run in a loop, producing tokens until it hits the end of input or an error.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export function lex(input) {
|
||||
let tokens = [];
|
||||
|
||||
let state = lexer.init(input);
|
||||
while (true) {
|
||||
let start = state.position;
|
||||
let kind = lexer.nextToken(state);
|
||||
let end = state.position;
|
||||
tokens.push({ kind, start, end });
|
||||
if (kind == eof || kind == "error") break;
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D10GZMN36TDZWYH632"
|
||||
- remember that error handling is important!
|
||||
we mustn't forget that the user can produce invalid input - such as this string:
|
||||
|
||||
```haku
|
||||
{example}
|
||||
```
|
||||
|
||||
haku does not have curly braces in its syntax, so that's clearly an error!
|
||||
reporting this to the user will be a much better experience than, perhaps... getting stuck in an infinite loop. :oh:
|
||||
|
||||
% id = "01J3K8A0D117B6AQ8YKMCX4KAK"
|
||||
- now for the most important part - that `lexer.nextToken` we used will be responsible for reading back a token from the input, and returning what kind of token it has read.
|
||||
|
||||
for now, let's make it detect parentheses.
|
||||
we of course also need to handle end of input - whenever our lexer runs out of characters to consume, as well as when it encounters any characters we don't expect.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
lexer.nextToken = (state) => {
|
||||
let c = lexer.current(state);
|
||||
|
||||
if (c == "(" || c == ")") {
|
||||
lexer.advance(state);
|
||||
return c;
|
||||
}
|
||||
if (c == eof) return eof;
|
||||
|
||||
lexer.advance(state);
|
||||
return "error";
|
||||
};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1C5C5P32WQFW1PD0R"
|
||||
- with all that frameworking in place, let's test if our lexer works!
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export function printTokens(input) {
|
||||
let tokens = lex(input);
|
||||
for (let { kind, start, end } of tokens) {
|
||||
if (kind == "error") {
|
||||
let errorString = input.substring(start, end);
|
||||
console.log(`unexpected characters at ${start}..${end}: '${errorString}'`);
|
||||
} else {
|
||||
console.log(`${kind} @ ${start}..${end}`);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
printTokens(`()((()))`);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
( @ 0..1
|
||||
) @ 1..2
|
||||
( @ 2..3
|
||||
( @ 3..4
|
||||
( @ 4..5
|
||||
) @ 5..6
|
||||
) @ 6..7
|
||||
) @ 7..8
|
||||
end of file @ 8..8
|
||||
```
|
||||
|
||||
...seems pretty perfect!
|
||||
|
||||
% id = "01J3K8A0D1AV280QZ0Y10CPN62"
|
||||
- except, of course, we're not handling whitespace or comments.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
printTokens(`( )`);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
( @ 0..1
|
||||
unexpected characters at 1..2: ' '
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1RHK349974Y23DG56"
|
||||
- so let's write another function that will lex those.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
lexer.skipWhitespaceAndComments = (state) => {
|
||||
while (true) {
|
||||
let c = lexer.current(state);
|
||||
if (c == " " || c == "\t" || c == "\n" || c == "\r") {
|
||||
lexer.advance(state);
|
||||
continue;
|
||||
}
|
||||
if (c == ";") {
|
||||
while (
|
||||
lexer.current(state) != "\n" &&
|
||||
lexer.current(state) != eof
|
||||
) {
|
||||
lexer.advance(state);
|
||||
}
|
||||
lexer.advance(state); // skip over newline, too
|
||||
continue;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D10F11DPN5TN0Y7AAX"
|
||||
- except instead of looking at whitespace and comments in the main token reading function, we'll do that _outside_ of it, to avoid getting whitespace caught up in the actual tokens' `start`..`end` spans.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export function lex(input) {
|
||||
let tokens = [];
|
||||
|
||||
let state = lexer.init(input);
|
||||
while (true) {
|
||||
lexer.skipWhitespaceAndComments(state); // <--
|
||||
let start = state.position;
|
||||
let kind = lexer.nextToken(state);
|
||||
let end = state.position;
|
||||
tokens.push({ kind, start, end });
|
||||
if (kind == eof || kind == "error") break;
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1AQWFJHSC9XCCKNKF"
|
||||
- now if we look at the output...
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
printTokens(`( )`);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
( @ 0..1
|
||||
) @ 2..3
|
||||
end of file @ 3..3
|
||||
```
|
||||
|
||||
the whitespace is ignored just fine!
|
||||
|
||||
% id = "01J3K8A0D1S7MCHYYVYMPWEHEF"
|
||||
- and comments of course follow:
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
printTokens(`
|
||||
( ; comment comment!
|
||||
)
|
||||
`);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
( @ 5..6
|
||||
) @ 30..31
|
||||
end of file @ 32..32
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D16NF69K3MNNYH1VJ1"
|
||||
- it'd be really nice if we could use identifiers though...
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
printTokens(`(hello world)`);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
( @ 0..1
|
||||
unexpected characters at 1..2: 'h'
|
||||
```
|
||||
|
||||
so I guess that's the next thing on our TODO list!
|
||||
|
||||
% id = "01J3K8A0D1SF46M2E7DEP6V44N"
|
||||
- we'll introduce a function that will tell us if a given character is a valid character in an identifier.
|
||||
|
||||
since S-expressions are so minimal, it is typical to allow all sorts of characters in identifiers -
|
||||
in our case, we'll allow alphanumerics, as well as a bunch of symbols that seem useful.
|
||||
and funky!
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export const isIdentifier = (c) =>
|
||||
/^[a-zA-Z0-9+~!@$%^&*=<>+?/.,:\\|-]$/.test(c);
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D10TTSM7TV0C05PVNJ"
|
||||
- this could probably be a whole lot faster if I had used a simple `c >= 'a' && c <= 'z'` chain, but I'm lazy, so a regex it is.
|
||||
|
||||
% id = "01J3K8A0D16VA5D4JGT26YZ4KP"
|
||||
- when I said funky, I wasn't joking - have you ever seen `,` in an identifier?
|
||||
|
||||
% id = "01J3K8A0D11GYDHXVZJXVWAGHN"
|
||||
- I'm allowing it since it isn't really gonna hurt anything.
|
||||
I _did_ disallow `#` though, because that's commonly used for various extensions.
|
||||
who knows what I might be able to cram under that symbol!
|
||||
|
||||
% id = "01J3K8A0D17S0FTBXHP36VVP8C"
|
||||
- with a character set established, we can now stuff identifiers into our lexer.
|
||||
I'll start by introducing a function that'll chew as many characters that meet a given condition as it can:
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
lexer.advanceWhile = (state, fn) => {
|
||||
while (fn(lexer.current(state))) {
|
||||
lexer.advance(state);
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1YV77A2TR64R74HRD"
|
||||
- now we can add identifiers to `nextToken`:
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
lexer.nextToken = (state) => {
|
||||
let c = lexer.current(state);
|
||||
|
||||
if (isIdentifier(c)) {
|
||||
lexer.advanceWhile(state, isIdentifier);
|
||||
return "identifier";
|
||||
}
|
||||
if (c == "(" || c == ")") {
|
||||
lexer.advance(state);
|
||||
return c;
|
||||
}
|
||||
if (c == eof) return eof;
|
||||
|
||||
lexer.advance(state);
|
||||
return "error";
|
||||
};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1DKA8YCBCJVZXXGR4"
|
||||
- let's try lexing that `(hello world)` string now.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
printTokens(`(hello world)`);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
( @ 0..1
|
||||
identifier @ 1..6
|
||||
identifier @ 7..12
|
||||
) @ 12..13
|
||||
end of file @ 13..13
|
||||
```
|
||||
|
||||
nice!
|
||||
|
||||
% id = "01J3K8A0D15G77YG2A0CN8P0M6"
|
||||
- in the original example, there were also a couple of numbers:
|
||||
|
||||
```haku
|
||||
(+ (fib (- n 1)) (fib (- n 2)))
|
||||
```
|
||||
|
||||
so let's also add support for some basic integers; we'll add decimals later if we ever need them.
|
||||
|
||||
% id = "01J3K8A0D18MA59WFYW7PCPQ30"
|
||||
- defining integers is going to be a similar errand to identifiers, so I'll spare you the details and just dump all the code at you:
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export const isDigit = (c) => c >= "0" && c <= "9";
|
||||
|
||||
lexer.nextToken = (state) => {
|
||||
let c = lexer.current(state);
|
||||
|
||||
if (isDigit(c)) {
|
||||
lexer.advanceWhile(state, isDigit);
|
||||
return "integer";
|
||||
}
|
||||
if (isIdentifier(c)) {
|
||||
lexer.advanceWhile(state, isIdentifier);
|
||||
return "identifier";
|
||||
}
|
||||
if (c == "(" || c == ")") {
|
||||
lexer.advance(state);
|
||||
return c;
|
||||
}
|
||||
if (c == eof) return eof;
|
||||
|
||||
lexer.advance(state);
|
||||
return "error";
|
||||
};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1SZ4YSR1KD2HYAWPV"
|
||||
- note how we check `isDigit` _before_ `isIdentifier` -
|
||||
this is really important, because otherwise identifiers would take precedence over integers!
|
||||
|
||||
% id = "01J3K8A0D1B5J858DJ6BKNJRKT"
|
||||
- now let's see the results of all that hard work.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
printTokens(`(fib (- n 1))`);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
( @ 0..1
|
||||
identifier @ 1..4
|
||||
( @ 5..6
|
||||
identifier @ 6..7
|
||||
identifier @ 8..9
|
||||
integer @ 10..11
|
||||
) @ 11..12
|
||||
) @ 12..13
|
||||
end of file @ 13..13
|
||||
```
|
||||
|
||||
looks good!
|
||||
|
||||
% id = "01J3K8A0D148R9B0HVMH79A3CK"
|
||||
- #### an amen break
|
||||
|
||||
% id = "01J3K8A0D1WX6EH5H61BVR1X31"
|
||||
- to let your head rest a bit after reading all of this, here are some fun numbers:
|
||||
|
||||
% id = "01J3K8A0D11D479PJKY22AQFTC"
|
||||
- there are a total of
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
console.log(Object.keys(lexer).length);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
6
|
||||
```
|
||||
|
||||
functions in the `lexer` namespace.
|
||||
|
||||
not a whole lot, huh?
|
||||
|
||||
% id = "01J3K8A0D19XK0MRH4Z461G2J0"
|
||||
- I was personally quite surprised how tiny an S-expression lexer can be.
|
||||
they were right about S-expressions being a good alternative for when you don't want to write syntax!
|
||||
|
||||
the entire thing fits in *86 lines of code.*
|
||||
|
||||
% id = "01J3K8A0D1CG89X84KM2DN14ZT"
|
||||
+ :bulb: for the curious: *here's why I implement lexers like this!*
|
||||
|
||||
% id = "01J3K8A0D1FYBKJ6X2W17QAK3Z"
|
||||
- many tutorials will have you implementing lexers such that data is _parsed_ into the language's data types.
|
||||
for instance, integer tokens would be parsed into JavaScript `number`s.
|
||||
|
||||
I don't like this approach for a couple reasons.
|
||||
|
||||
% id = "01J3K8A0D1P258JKRVG11M7B64"
|
||||
- pre-parsing data like this pollutes your lexer code with wrangling tokens into useful data types.
|
||||
I prefer it if the lexer is only responsible for _reading back strings_.
|
||||
|
||||
implemented my way, it can concern itself only with chewing through the source string; no need to extract substrings out of the input or anything.
|
||||
|
||||
% id = "01J3K8A0D14VZTKBPJTG3BGD0M"
|
||||
- there's also a performance boost from implementing it this way: _lazy_ parsing, as I like to call it, allows us to defer most of the parsing work until it's actually needed.
|
||||
if the token never ends up being needed (e.g. due to a syntax error,) we don't end up doing extra work eagerly!
|
||||
|
||||
% id = "01J3K8A0D1GYZ9Y9MK6K24JME7"
|
||||
- if that doesn't convince you, consider that now all your tokens are the exact same data structure, and you can pack them neatly into a flat array.
|
||||
|
||||
if you're using a programming language with flat arrays, that is.
|
||||
such as Rust or C.
|
||||
|
||||
I'm implementing this in JavaScript of course, but it's still neat not having to deal with mass `if`osis when extracting data from tokens - you're always guaranteed a token will have a `kind`, `start`, and `end`.
|
||||
|
||||
% id = "01J3K8A0D1NTPSD77WM84KVMRX"
|
||||
- now. back to your regularly scheduled programming!
|
||||
|
||||
% id = "01J3K8A0D1X6A68K6TGX00FCTE"
|
||||
- it's time for us to implement a parser for our S-expressions.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export const parser = {};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1ZMJJHDMW24D1GESE"
|
||||
- the goal is to go from this flat list of tokens:
|
||||
|
||||
| type | start | end | text |
|
||||
| --- | --: | --: | --- |
|
||||
| ( | 0 | 1 | `(` |
|
||||
| identifier | 1 | 8 | `example` |
|
||||
| identifier | 9 | 21 | `s-expression` |
|
||||
| ) | 21 | 22 | `)` |
|
||||
| end of file | 22 | 22 | |
|
||||
|
||||
to a nice recursive tree that represents our S-expressions:
|
||||
|
||||
```haku.ast
|
||||
list
|
||||
identifier example
|
||||
identifier s-expression
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1SSWPAKSNG8TA4N1H"
|
||||
- there are many parsing strategies we could go with, but in my experience you can't go simpler than good ol' [recursive descent][].
|
||||
|
||||
[recursive descent]: https://en.wikipedia.org/wiki/Recursive_descent_parser
|
||||
|
||||
% id = "01J3K8A0D1NHD7QGQ1NZTDQRWX"
|
||||
- the idea of recursive descent is that you have a stream of tokens that you read from left to right, and you have a set of functions that parse your non-terminals.
|
||||
|
||||
essentially, each function corresponds to a single type of node in your syntax tree.
|
||||
|
||||
% id = "01J3K8A0D1F01CKXP10M7WD6VV"
|
||||
- does the "stream of tokens that you read from left to right" ring a bell?
|
||||
if it does, that's because lexing operates on a _very_ similar process - it's just non-recursive!
|
||||
|
||||
% id = "01J3K8A0D111A22X9WW8NP3T3X"
|
||||
- knowing that similarity, we'll start off with a similar set of helper functions to our lexer.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
parser.init = (tokens) => {
|
||||
return {
|
||||
tokens,
|
||||
position: 0,
|
||||
};
|
||||
};
|
||||
|
||||
parser.current = (state) => state.tokens[state.position];
|
||||
parser.advance = (state) => {
|
||||
if (state.position < state.tokens.length - 1) {
|
||||
++state.position;
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
note however that instead of letting `current` read out of bounds, we instead clamp `advance` to the very last token - which is guaranteed to be `end of file`.
|
||||
|
||||
% id = "01J3K8A0D1XF9PEBQ6D4F1P3BA"
|
||||
- the S-expression grammar can compose in the following ways:
|
||||
|
||||
% id = "01J3K8A0D1CWFBC9JTM6PFZRR8"
|
||||
- an S-expression is a literal integer, identifier, or a list.
|
||||
|
||||
% id = "01J3K8A0D1BM9QGDHWCX7PANPR"
|
||||
- literal integers `65` and identifiers `owo` stand alone on their own.
|
||||
they do not nest anything else inside of them.
|
||||
|
||||
% id = "01J3K8A0D19BXABXNV75N93A18"
|
||||
- lists `(a b c)` are sequences of S-expressions enclosed in parentheses.
|
||||
inside, they can contain literal integers and identifiers, or even other lists recursively.
|
||||
|
||||
% id = "01J3K8A0D1G43KZDVH7EW0ZAKQ"
|
||||
- this yields the following [EBNF][] grammar:
|
||||
|
||||
```ebnf
|
||||
Expr = "integer" | "identifier" | List;
|
||||
List = "(" , { Expr } , ")";
|
||||
```
|
||||
|
||||
[EBNF]: https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form
|
||||
|
||||
% id = "01J3K8A0D1FPZE52S1RVWCR66Y"
|
||||
- we'll start by implementing the `Expr = "integer" | "identifier"` rule.
|
||||
parsing integers and identifiers is as simple as reading their single token, and returning a node for it:
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
parser.parseExpr = (state) => {
|
||||
let token = parser.current(state);
|
||||
switch (token.kind) {
|
||||
case "integer":
|
||||
case "identifier":
|
||||
parser.advance(state);
|
||||
return { ...token };
|
||||
|
||||
default:
|
||||
parser.advance(state);
|
||||
return {
|
||||
kind: "error",
|
||||
error: "unexpected token",
|
||||
start: token.start,
|
||||
end: token.end,
|
||||
};
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1ENMQV0ZSP8C5ZX5A"
|
||||
- of course again, we mustn't forget about errors!
|
||||
it's totally possible for our lexer to produce a token we don't understand - such as an `error`, or an `end of file`.
|
||||
or really any token we choose to introduce in the future, but choose to not be valid as an `Expr` starter.
|
||||
|
||||
% id = "01J3K8A0D1QRSPTYPH2JQ77HW9"
|
||||
+ we'll wrap initialization and `parseExpr` in another function, which will accept a list of tokens and return a syntax tree, hiding the complexity of managing the parser state underneath.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
parser.parseRoot = (state) => parser.parseExpr(state);
|
||||
|
||||
export function parse(input) {
|
||||
let state = parser.init(input);
|
||||
let expr = parser.parseRoot(state);
|
||||
|
||||
if (parser.current(state).kind != eof) {
|
||||
let strayToken = parser.current(state);
|
||||
return {
|
||||
kind: "error",
|
||||
error: `found stray '${strayToken.kind}' token after expression`,
|
||||
start: strayToken.start,
|
||||
end: strayToken.end,
|
||||
};
|
||||
}
|
||||
|
||||
return expr;
|
||||
}
|
||||
```
|
||||
|
||||
this function also checks that there aren't any tokens after we're done parsing the root `Expr` production.
|
||||
it wouldn't be very nice UX if we let the user input tokens that didn't do anything!
|
||||
|
||||
% id = "01J3K8A0D1KE4JRKEXWPAQJFDV"
|
||||
- I'm adding that `parseRoot` alias in so that it's easy to swap the root production to something else than `Expr`.
|
||||
|
||||
% id = "01J3K8A0D1GP31XPC0VVZTJPMV"
|
||||
- now we can try to parse a tree out of a little expression...
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export function printTree(input) {
|
||||
let tokens = lex(input);
|
||||
let tree = parse(tokens);
|
||||
console.log(JSON.stringify(tree, null, " "));
|
||||
}
|
||||
```
|
||||
|
||||
...and print it into the console:
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
printTree("-w-")
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
{
|
||||
"kind": "identifier",
|
||||
"start": 0,
|
||||
"end": 3
|
||||
}
|
||||
```
|
||||
|
||||
nice!
|
||||
|
||||
% id = "01J3K8A0D14YEA038BD8KAAECC"
|
||||
- now it's time to parse some lists.
|
||||
for that, we'll introduce another function, which will be called by `parseExpr` with an existing `(` token.
|
||||
|
||||
its task will be to read as many expressions as it can, until it hits a closing parenthesis `)`, and then construct a node out of that.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
parser.parseList = (state, leftParen) => {
|
||||
parser.advance(state);
|
||||
|
||||
let children = [];
|
||||
while (parser.current(state).kind != ")") {
|
||||
if (parser.current(state).kind == eof) {
|
||||
return {
|
||||
kind: "error",
|
||||
error: "missing closing parenthesis ')'",
|
||||
start: leftParen.start,
|
||||
end: leftParen.end,
|
||||
};
|
||||
}
|
||||
children.push(parser.parseExpr(state));
|
||||
}
|
||||
|
||||
let rightParen = parser.current(state);
|
||||
parser.advance(state);
|
||||
|
||||
return {
|
||||
kind: "list",
|
||||
children,
|
||||
start: leftParen.start,
|
||||
end: rightParen.end,
|
||||
};
|
||||
};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1YZ93B7X3A14X1W0N"
|
||||
- and the last thing left to do is to hook it up to our `parseExpr`, in response to a `(` token:
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
parser.parseExpr = (state) => {
|
||||
let token = parser.current(state);
|
||||
switch (token.kind) {
|
||||
case "integer":
|
||||
case "identifier":
|
||||
parser.advance(state);
|
||||
return { ...token };
|
||||
|
||||
case "(":
|
||||
return parser.parseList(state, token); // <--
|
||||
|
||||
default:
|
||||
parser.advance(state);
|
||||
return {
|
||||
kind: "error",
|
||||
error: "unexpected token",
|
||||
start: token.start,
|
||||
end: token.end,
|
||||
};
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1RHWQAA9FMDC654S9"
|
||||
- now let's try parsing an S-expression!
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
printTree("(hello! ^^ (nested nest))");
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
{
|
||||
"kind": "list",
|
||||
"children": [
|
||||
{
|
||||
"kind": "identifier",
|
||||
"start": 1,
|
||||
"end": 7
|
||||
},
|
||||
{
|
||||
"kind": "identifier",
|
||||
"start": 8,
|
||||
"end": 10
|
||||
},
|
||||
{
|
||||
"kind": "list",
|
||||
"children": [
|
||||
{
|
||||
"kind": "identifier",
|
||||
"start": 12,
|
||||
"end": 18
|
||||
},
|
||||
{
|
||||
"kind": "identifier",
|
||||
"start": 19,
|
||||
"end": 23
|
||||
}
|
||||
],
|
||||
"start": 11,
|
||||
"end": 24
|
||||
}
|
||||
],
|
||||
"start": 0,
|
||||
"end": 25
|
||||
}
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1AJP9WHVKBBKKC3B7"
|
||||
- I don't know about you, but I personally find the JSON output quite distracting and long.
|
||||
I can't imagine how long it'll be on even larger expressions!
|
||||
|
||||
to counteract that, let's write an S-expression pretty printer:
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export function exprToString(expr, input) {
|
||||
let inputSubstring = input.substring(expr.start, expr.end);
|
||||
switch (expr.kind) {
|
||||
case "integer":
|
||||
case "identifier":
|
||||
return inputSubstring;
|
||||
|
||||
case "list":
|
||||
return `(${expr.children.map((expr) => exprToString(expr, input)).join(" ")})`;
|
||||
|
||||
case "error":
|
||||
return `<error ${expr.start}..${expr.end} '${inputSubstring}': ${expr.error}>`;
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
% id = "01J3K8A0D1CB6B8BEY65ADJZSV"
|
||||
- obviously this loses some information compared to the JSON - we no longer report start and end indices, but that is easy enough to add if you need it.
|
||||
I don't need it, so I'll conveniently skip it for now.
|
||||
|
||||
% id = "01J3K8A0D1G1BPN5W4GT26EJX4"
|
||||
- let's see if our pretty printer works!
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export function printTree(input) {
|
||||
let tokens = lex(input);
|
||||
let tree = parse(tokens);
|
||||
console.log(exprToString(tree, input));
|
||||
}
|
||||
|
||||
printTree("(hello! -w- (nestedy nest))");
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
(hello! -w- (nestedy nest))
|
||||
```
|
||||
|
||||
that's... the same string.
|
||||
|
||||
% id = "01J3K8A0D1XP4FQB2HZR9GV5CJ"
|
||||
- let's try something more complicated, with comments and such.
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
export function printTree(input) {
|
||||
let tokens = lex(input);
|
||||
let tree = parse(tokens);
|
||||
console.log(exprToString(tree, input));
|
||||
}
|
||||
|
||||
printTree(`
|
||||
(def add-two
|
||||
; Add two to a number.
|
||||
(fn (n) (+ n 2)))
|
||||
`);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
(def add-two (fn (n) (+ n 2)))
|
||||
```
|
||||
|
||||
looks like it works!
|
||||
|
||||
% id = "01J3K8A0D10DRSP49WF8YH5WSH"
|
||||
- of course this is hardly the _prettiest_ printer in the world.
|
||||
|
||||
% id = "01J3K8A0D1VCJ7TV6CN7M07N5J"
|
||||
- for one, it does not even preserve your comments.
|
||||
|
||||
% id = "01J3K8A0D1K3M9223YM96PS68B"
|
||||
- it does not add indentation either, it just blindly dumps a minimal S-expression into the console.
|
||||
|
||||
% id = "01J3K8A0D1P2EF0C657J1REV9Z"
|
||||
- but it proves that our parser _works_ - we're able to parse an arbitrary S-expression into a syntax tree, and then traverse that syntax tree again, performing various recursive algorithms on it.
|
||||
isn't that cool?
|
||||
|
||||
% id = "01J3K8A0D1PB6MSPBS1K6K6KR3"
|
||||
- and that's all there'll be to parsing, at least for now!
|
||||
|
||||
% id = "01J3K8A0D11M0NJCBKKPAMVJ2J"
|
||||
- maybe in the future I'll come up with something more complex, with a more human-friendly syntax.
|
||||
who knows!
|
||||
right now it's experimentation time, so these things don't really matter.
|
||||
|
||||
% id = "01J3K8A0D1HB566XYSET099Q26"
|
||||
- #### amen break, part two
|
||||
|
||||
% id = "01J3K8A0D1KX5EWV5NW29PF525"
|
||||
- the S-expression parser consists of a whopping
|
||||
|
||||
{:program=haku}
|
||||
```javascript
|
||||
console.log(Object.keys(parser).length);
|
||||
```
|
||||
|
||||
{:program=haku}
|
||||
```output
|
||||
6
|
||||
```
|
||||
|
||||
functions.
|
||||
just like the lexer!
|
||||
|
||||
% id = "01J3K8A0D1RZE0F75S2C7PPTAZ"
|
||||
- the parser is *99 lines of code*. quite tiny, if you ask me!
|
||||
|
||||
% id = "01J3K8A0D1K91SY17T780S7MPK"
|
||||
- together with the lexer, the entire S-expression parser is *185 lines of JavaScript.*
|
||||
that's a pretty small amount, especially given that it's extremely simple code!
|
||||
|
||||
% id = "01J3K8A0D1PJNDGKJH8DXN4G3G"
|
||||
- I wouldn't call this parser production-ready, though.
|
||||
a production-ready parser would have some way of _preserving comments_ inside the syntax tree, such that you can pretty-print it losslessly.
|
||||
|
||||
if you're bored, you can try to add that in!
|
||||
|
||||
% id = "01J3K8A0D1PJQJFAG2YADEKVNB"
|
||||
+ here's a fun piece of trivia: I'm wrote a [Nim S-expression parser for Rosetta Code][nim s-expr] way back in [July 2019][nim s-expr diff].
|
||||
|
||||
[nim s-expr]: https://rosettacode.org/wiki/S-expressions#Nim
|
||||
[nim s-expr diff]: https://rosettacode.org/wiki/S-expressions?diff=prev&oldid=202824
|
||||
|
||||
% id = "01J3K8A0D1BWG3TFFXDD6BCPP2"
|
||||
- you can see it's quite different from how I wrote this parser - in particular, because I didn't need to focus so much on the parser being hot-patchable and reusable, it came out quite a lot more compact, despite having fully static types!
|
||||
|
||||
% id = "01J3K8A0D1F4R8KPHETV9N08YP"
|
||||
- it's definitely not how I would write a parser nowadays.
|
||||
it's pretty similar, but the syntax tree structures are quite different - it doesn't use the [lazy parsing][branch:01J3K8A0D1FYBKJ6X2W17QAK3Z] trick I talked about before.
|
||||
|
||||
% id = "01J3K8A0D178J6W49AFCE9HEQ6"
|
||||
- I mean, it's only a trick I learned last year!
|
||||
|
||||
% id = "01J3K8A0D12VCHW6AJX0ZGPQBY"
|
||||
- code style-wise it's also not my prettiest Nim code ever - it kind of abuses `template`s for referring to the current character with a single word, but that doesn't convey the fact that it's an effectful operation very well.
|
||||
|
||||
% stage = "Draft"
|
||||
id = "01J3K8A0D1D0NTT3JYYFMRYVSC"
|
||||
- ### tests
|
||||
|
||||
% id = "01J3K8A0D1DQZCZSX4H82QQBHR"
|
||||
- parser
|
||||
|
||||
{:program=test-parser}
|
||||
```javascript
|
||||
import { lex, parse, exprToString } from "haku/sexp.js";
|
||||
|
||||
let input = "(example s-expression)";
|
||||
let tokens = lex(input);
|
||||
|
||||
tokens.forEach(token => console.log(`${token.kind} ${token.start}..${token.end} '${input.substring(token.start, token.end)}'`));
|
||||
|
||||
let ast = parse(tokens);
|
||||
console.log(exprToString(ast, input));
|
||||
```
|
||||
|
||||
{:program=test-parser}
|
||||
```output
|
||||
```
|
186
static/js/components/haku/sexp.js
Normal file
186
static/js/components/haku/sexp.js
Normal file
|
@ -0,0 +1,186 @@
|
|||
export const lexer = {};
|
||||
|
||||
lexer.init = (input) => {
|
||||
return {
|
||||
input,
|
||||
position: 0,
|
||||
};
|
||||
};
|
||||
|
||||
export const eof = "end of file";
|
||||
|
||||
lexer.current = (state) => {
|
||||
return state.position < state.input.length
|
||||
? state.input.charAt(state.position)
|
||||
: eof;
|
||||
};
|
||||
|
||||
lexer.advance = (state) => ++state.position;
|
||||
|
||||
lexer.advanceWhile = (state, fn) => {
|
||||
while (fn(lexer.current(state))) {
|
||||
lexer.advance(state);
|
||||
}
|
||||
};
|
||||
|
||||
lexer.skipWhitespaceAndComments = (state) => {
|
||||
while (true) {
|
||||
let c = lexer.current(state);
|
||||
if (c == " " || c == "\t" || c == "\n" || c == "\r") {
|
||||
lexer.advance(state);
|
||||
continue;
|
||||
}
|
||||
if (c == ";") {
|
||||
while (
|
||||
lexer.current(state) != "\n" &&
|
||||
lexer.current(state) != eof
|
||||
) {
|
||||
lexer.advance(state);
|
||||
}
|
||||
lexer.advance(state); // skip over newline, too
|
||||
continue;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
export const isDigit = (c) => c >= "0" && c <= "9";
|
||||
export const isIdentifier = (c) =>
|
||||
/^[a-zA-Z0-9+~!@$%^&*=<>+?/.,:\\|-]$/.test(c);
|
||||
|
||||
lexer.nextToken = (state) => {
|
||||
let c = lexer.current(state);
|
||||
|
||||
if (isDigit(c)) {
|
||||
lexer.advanceWhile(state, isDigit);
|
||||
return "integer";
|
||||
}
|
||||
if (isIdentifier(c)) {
|
||||
lexer.advanceWhile(state, isIdentifier);
|
||||
return "identifier";
|
||||
}
|
||||
if (c == "(" || c == ")") {
|
||||
lexer.advance(state);
|
||||
return c;
|
||||
}
|
||||
if (c == eof) return eof;
|
||||
|
||||
lexer.advance(state);
|
||||
return "error";
|
||||
};
|
||||
|
||||
export function lex(input) {
|
||||
let tokens = [];
|
||||
|
||||
let state = lexer.init(input);
|
||||
while (true) {
|
||||
lexer.skipWhitespaceAndComments(state);
|
||||
let start = state.position;
|
||||
let kind = lexer.nextToken(state);
|
||||
let end = state.position;
|
||||
tokens.push({ kind, start, end });
|
||||
if (kind == eof || kind == "error") break;
|
||||
}
|
||||
|
||||
return tokens;
|
||||
}
|
||||
|
||||
export const parser = {};
|
||||
|
||||
parser.init = (tokens) => {
|
||||
return {
|
||||
tokens,
|
||||
position: 0,
|
||||
};
|
||||
};
|
||||
|
||||
parser.current = (state) => state.tokens[state.position];
|
||||
parser.advance = (state) => {
|
||||
if (state.position < state.tokens.length - 1) {
|
||||
++state.position;
|
||||
}
|
||||
};
|
||||
|
||||
parser.parseExpr = (state) => {
|
||||
let token = parser.current(state);
|
||||
switch (token.kind) {
|
||||
case "integer":
|
||||
case "identifier":
|
||||
parser.advance(state);
|
||||
return { ...token };
|
||||
|
||||
case "(":
|
||||
return parser.parseList(state, token);
|
||||
|
||||
default:
|
||||
parser.advance(state);
|
||||
return {
|
||||
kind: "error",
|
||||
error: "unexpected token",
|
||||
start: token.start,
|
||||
end: token.end,
|
||||
};
|
||||
}
|
||||
};
|
||||
|
||||
parser.parseList = (state, leftParen) => {
|
||||
parser.advance(state);
|
||||
|
||||
let children = [];
|
||||
while (parser.current(state).kind != ")") {
|
||||
if (parser.current(state).kind == eof) {
|
||||
return {
|
||||
kind: "error",
|
||||
error: "missing closing parenthesis ')'",
|
||||
start: leftParen.start,
|
||||
end: leftParen.end,
|
||||
};
|
||||
}
|
||||
children.push(parser.parseExpr(state));
|
||||
}
|
||||
|
||||
let rightParen = parser.current(state);
|
||||
parser.advance(state);
|
||||
|
||||
return {
|
||||
kind: "list",
|
||||
children,
|
||||
start: leftParen.start,
|
||||
end: rightParen.end,
|
||||
};
|
||||
};
|
||||
|
||||
parser.parseRoot = parser.parseExpr;
|
||||
|
||||
export function parse(input) {
|
||||
let state = parser.init(input);
|
||||
let expr = parser.parseRoot(state);
|
||||
|
||||
if (parser.current(state).kind != eof) {
|
||||
let strayToken = parser.current(state);
|
||||
return {
|
||||
kind: "error",
|
||||
error: "found stray token after expression",
|
||||
start: strayToken.start,
|
||||
end: strayToken.end,
|
||||
};
|
||||
}
|
||||
|
||||
return expr;
|
||||
}
|
||||
|
||||
export function exprToString(expr, input) {
|
||||
let inputSubstring = input.substring(expr.start, expr.end);
|
||||
switch (expr.kind) {
|
||||
case "integer":
|
||||
case "identifier":
|
||||
return inputSubstring;
|
||||
|
||||
case "list":
|
||||
return `(${expr.children.map((expr) => exprToString(expr, input)).join(" ")})`;
|
||||
|
||||
case "error":
|
||||
return `<error ${expr.start}..${expr.end} '${inputSubstring}': ${expr.error}>`;
|
||||
}
|
||||
}
|
10
static/syntax/ebnf.json
Normal file
10
static/syntax/ebnf.json
Normal file
|
@ -0,0 +1,10 @@
|
|||
{
|
||||
"patterns": [
|
||||
{ "regex": "[a-zA-Z_][a-zA-Z0-9_]*", "is": "keyword2" },
|
||||
{ "regex": "\"(\\\\\"|[^\"])*\"", "is": "string" },
|
||||
{ "regex": "'('|[^'])*'", "is": "string" },
|
||||
{ "regex": "[+*?=|,-]", "is": "operator" }
|
||||
],
|
||||
"keywords": {
|
||||
}
|
||||
}
|
26
static/syntax/haku.json
Normal file
26
static/syntax/haku.json
Normal file
|
@ -0,0 +1,26 @@
|
|||
{
|
||||
"patterns": [
|
||||
{ "regex": ";.*", "is": "comment" },
|
||||
{ "regex": "[0-9]+", "is": "literal" },
|
||||
{
|
||||
"regex": "\\((fn)\\s*\\(.*?\\)",
|
||||
"is": {
|
||||
"default": "default",
|
||||
"captures": ["keyword1"]
|
||||
}
|
||||
},
|
||||
{
|
||||
"regex": "\\(([a-zA-Z0-9+~!@$%^&*=<>+?/.,:\\\\|-]+)",
|
||||
"is": {
|
||||
"default": "default",
|
||||
"captures": ["function"]
|
||||
}
|
||||
},
|
||||
{ "regex": "[a-zA-Z0-9+~!@$%^&*=<>+?/.,:\\\\|-]+", "is": "identifier" }
|
||||
],
|
||||
"keywords": {
|
||||
"def": { "into": "keyword1" },
|
||||
"if": { "into": "keyword1" }
|
||||
}
|
||||
}
|
||||
|
|
@ -54,4 +54,5 @@ description = "a place on the Internet I like to call home"
|
|||
import_roots = [
|
||||
{ name = "treehouse", path = "static/js" },
|
||||
{ name = "tairu", path = "static/js/components/tairu" },
|
||||
{ name = "haku", path = "static/js/components/haku" },
|
||||
]
|
||||
|
|
Loading…
Reference in a new issue